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provided that E is known, Vn and V2h can be calculated 
from the experimental values of the three ratios. 

Fig. 1 gives an experimental result for magnesium oxide. 
The abscissa is V~ and the ordinate, Vzzz. The accelerating 
voltage is 100 kV. From each experimental value of the 
ratios, a curve is drawn on the diagram. The values of V~  
and //222 are determined from the intersection of the curves. 
The error can also be estimated as shown by broken lines in 
the Figure. The values obtained were V ~ =  1.78_+0.05 and 
V222= 3.90+0-10 volt. The former value is in good accord 
with that of Lehmpfuhl (1972). 

In many cases, the fringe distance is too large at the 
second-order position for an accurate value of /2n to be 
determined. The second method is proposed for such a case 
In this method, no fringes at the second order are required, 
while those at the first-order position and the symmetric 
position must be taken at least at two different accelerating 
voltages. Then, Vj, and V2h can be calculated from the ratios 
l, ym/l~ at these voltages. No experiment has yet been carried 
out with this method. A calculation was done to estimate 
the accelerating voltages adequate for the measurement. 

Fig. 2 shows a result obtained by assuming the values of 
l~ym/120o at 100, 1000 and 2000 kV. The three curves intersect 
at approximately 60'. This means that a high-accuracy 
measurement will be possible if the measurement is done 
at a conventional voltage around 100 kV and at least at an 
extremely high voltage over 1000 kV. 
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Theoretical expressions for the second, third and fourth moments of normalized intensity z and the 
fourth moment of the intensity (1) scattered by an asymmetric unit are given for crystals in which all 
atoms are in general positions. The expression for the fourth moment of I applicable to crystals con- 
taining atoms in both general and different types of special position is also given. 

Foster & Hargreaves (1963b) have given in "Fable 1 of 
their paper the expressions for the first three moments of 
the intensity (I) scattered by the asymmetric unit and these 
results are applicable to crystals (containing atoms at general 
positions in the unit cell) belonging to all but two of the 74 
space groups and the nine related plane groups in the tri- 
clinic, monoclinic and orthorhombic systems. They have also 
shown how these results could be used to derive the 
theoretical expressions for the second and third moments of 
the normalized intensity (z) when the crystal contains 
atoms in both general and special positions. In this note we 
shall list the expressions for the fourth moment of the in- 
tensity (1), since in some cases the tests based on the second 
and third moments of z may not be very effective. For 
example, for crystals containing a few (i.e. one or two) dom- 
inating heavy atoms besides a large number of light atoms, 
it may be useful to employ the fourth moment  of z. This is 
clear from Table 1 (computed from the results of Parthasa- 
rathy, 1966) which lists the higher moments of z for crystals 
containing one or two dominating atoms besides a large 
number of light atoms (for brevity referred to as the one- 
atom case and two-atom case respectively) in the space 
groups P 1 and P I  in terms of the parameter a2 (which is the 
fractional contribution to the local mean intensity from the 
heavy atoms in the unit cell.) 

* Contribution No. 361 from the Centre of Advanced 
Study in Physics, University of Madras, Madras-600025, India. 

Table 1. Higher moments of  z for the one-atom and two- 
atom cases when the heacy-atom contributions are 

0.7, 0"8 andO'9 

The tabulated values have been calculated from the results of 
Parthasarathy (1966). Note the inefficiency of (z 2) and the 

distinction of (z 4) in all the cases. 

Space One-atom case Two-atom case 
a~ group (Z 2 ) (Z 3 ) (Z 4 ) (Z 2 ) (Z3> (Z 4 ) 

0"7 P 1 i "51 2"96 7"07 1 "76 4" 14 1 ! "94 
PT 2"02 5"79 21.17 2"27 7"40 30"93 

0"8 P1 1"36 2"29 4"55 1.68 3"63 9.31 
P]  1-72 3"99 I 1"51 2"04 5"72 i 9"89 

0.9 PI 1.19 1"63 2"50 1.60 3"08 6"75 
PT 1"38 2"37 4"79 1 "79 4"07 10"92 

Another purpose of this note is to list the explicit ex- 
pressions for the second, third and fourth moments of the 
normalized intensity z applicable for crystals containing all 
atoms at general positions in the unit cell, since such crys- 
tals are of frequent occurence. As the expressions for (/4) 
for crystals containing ato:ns in both general and special 
positions and for (z"), n = 2 ,  3 and 4, for crystals con- 
taining all atoms in general positions could be derived from 
the theoretical results of Foster & Hargreaves (1963a) we 
shall give only the final results, omitting all the intermediate 
steps. The notation followed in this paper is the same as 
that used by Foster & Hargreaves (1963a, b). 
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Tab le  2. Theoretical expressions Jor the second, third and Jburth moments of  z and the fourth moment oJ'l for co'stals 
with all atoms in general positions 

For  the nota t ion see Foster  & Hargreaves  (1963a, b). The quantit ies C(4), C(6) and C(8) are characterist ic of  the given crystal,  
being de termined by the nurnber and the scattering powers of  the a toms in the asymmetr ic  unit, and are defined to be C(2n)= 

S(2n)/S"(2). 

Expressions for (1 ~) and (z"),  n =  2, 3 and 4 No. Geometr ica l  s t ructure  factor  
1 A = cos 0 B = sin 0 

A = s i n  0 B = c o s  0 

2 A = c o s  0 B = 0  (14) 
A = s i n  0 B = 0  (z 2) 

(z 3) 
(z') 

A = c o s  0 cos ff B = c o s  0 sin ~b ( I  4) 
A = c o s  0 sin q~ B = c o s  0 cos ~b (z 2) 
A = c o s  0 sin ¢ B = s i n  0 sin ~k (z 3) 
A = sin 0 sin ~b B = sin 0 cos ¢ ( & )  

4 A = c o s  0 cos ¢ B = 0  (14) 
A=COS 0 sin ¢ B = 0  
A--s in  0 sin qt B = 0  

5 A = c o s  0 cos ~k cos ~ B = s i n  0 sin ~ sin ~' (14 ) 
A = c o s 0 s i n C s i n q /  B =  sin 0 cos ~b cos ~ (z 2) 

(z 3) 

A = cos 0 cos ¢ cos ~v B = cos 0 cos ¢ sin ~g (14) 
A = c o s  0 sin ¢ sin ~v B = c o s  0 sin ¢ cos q/ (z 2) 
A = c o s  0 sin ~ sin ~, B = s i n  0 sin ~b sin ~, (z 3) 

7 A = c o s  0 cos ~b cos ~ B = 0  (14) 
A = c o s  0 cos ¢ sin q/ B = 0  
A = c o s  0 sin ¢ sin ~ B = 0  
A = 0 B =  sin 0 sin ~b sin 
A = 0  B = s i n  0s in  ~bcos q/ 
A = 0  B = s i n  0 cos ~b cos ~' 

(1*) = 24S'(2) - 72S(4)$2(2) + 64S(6)S(2) - 33S(8) + 18S2(4) 
(z 2) = 2 - C (4) 
(z 3) = 6 - 9C(4) + 4C(6) 
(z*) = 24 - 72C(4) + 64 C(6) - 33 C(8) + 18 C 2(4) 

= -~°o~-$4(2) - %1d-S(4)S ~(2) + ~-s S(6)S(2) - -~il~ss-S(8) + %½s-S2(4) 
= 3  - ~-C(4) 
= 15 - ~-~-C(4) + 10C(6) 
= 105 - 315 C(4) + 280C(6) - L~ss-~5 C(8) + ~I~C2(4) 

= ~$4(2) - ~S(4)S 2(2) + S(6)S(2) - ~3~S(8) + ~°~S 2(4) 
= 2 - ½ C(4) 
= 6 - -}C(4) + C(6) 
= 24 - 36C(4) + 16C(6) - ;~-C(8) + }C2(4) 

105 4 __315 2 35 __ 1155 = ~ S  (2) -s-T~S(4)S ( 2 ) + T ~ S ( 6 ) S ( 2 )  T~s~xS(8) 
+ ~¢~s ~(4) 

(z 2) = 3 - ¼C(4) 
(z 3) = 15 - %s-C(4) + ~-C(6) 
(z 4 ) = 105 -- -3 ~, ~C(4) + 70C(6) _~55_6~__,_,Ct8~ + -3~- C z(4) 

_=: ~ $ 4 ( 2 ) _  9 2 1 S 177 8 2-I 2 -r~-~S(4)S (2) + ~ S ( 6 )  (2) - a - w s ~ S (  ) + ~ . ~ S  (4) 
= 2 - ¼ C(4) 
= 6 - ~C(4) + ¼C(6) 
= 24 - ! 8C(4) + 4C(6) - ~ C(8) + -:~-C2(4) 

= ~ S ' ( 2 )  + 9 2 ~ ~13 ~ 2 a-~-~S(4)S (2) - ~S(6)S(2) + -r~s~:/S(8) + ~ S  (41 
= 2 + ¼ C(4) 
= 6 + ~C(4) - 2C(6) 
= 24 + 18 C(4) - 32C(6) + %½a-C(8) + -~.CZ(4) 

- -  1 0 5  4 3 1 5  2 - ~ S  (2)+  ~ S ( 4 ) S  (2) -rg-~-~S(6) S (2)+  ~ T ~ - , - - ~  ~o~ ~ .~'(:R~ 
315 2 + - ~ - ~ S  (41 

( z ' )  = 3 + 3C(4) 
(z 3) = 15 + ~-~-C(4)- 5C(6) 
(z 4) = 105 + ~¼s-C(4) - 140C(6) + - r r ~ - _ , ~ ,  

Tab l e  2 con t a in s  the  express ions  for  (z") ,  n =  2, 3 a n d  4 
a n d  ( i4 )  w h e n  all a t o m s  are  in genera l  posi t ions .  T h e  theo r -  
etical express ion  for  ( I  ~) w h e n  the  a t o m s  are  in b o t h  genera l  
and  di f ferent  types  o f  special  pos i t ion  can  be s h o w n  to be 

3 2 (14 ) = (14 ) + Z8(I~) + 282(14) + 283(14) + K4(Ig){2x(l, ) 
2 4 2 24(122) + 2~(12) + ),~(I3)} + (l , )[Ks{2t(Ix)  + 

+ 2~ (1~)} + K6{2tz2] (Ix) (I2) + 22232 (12) (13) 

+ ,,,~222 ( / 3  ) ( 1 1 ) } ]  + ( I  0 )[Ka{).6(I 3) + 2z6(I s) 
"4 2 2 + 26(1])} + K,{zx22( l , )  (12) + 212](!?) (13) 

4 ' 2  2 4"2 2 23).,(1])(I~) + 2 2 A 3 ( 1 2 )  ( 1 3 ) + 2 2 A 1 ( 1 2 )  (1 , )+ 4 2 
K72122/.]([1 ([3 + 23,~ 2 ( 1 3 ) 4  2 2 ( 1 2 )  } + 2 2 ~ ) ( 1 2 )  )] 

4~4 2 2321(13) 2223(12) (]2) + +K5{2~/.2(1~ ) ( 1 ] ) +  ,, a 2 , 4 2 2 1. 

6"2 3 6 2 3 6"2 3 + K4{).,/.2(1~) (I2) + 2~).3(1, ) (13) + 22/%(12) (13) 

+ ~6 2 3 "6 2 3 +,,.32x (13) +2322(13) (1,)} '/I-2/]'1(]2) ( ] ' 1 )  ( 1 1 )  6 2 3 

"4 2 2 +K6{AI2223(I 2) ( 1 2 )  ( 1 3 ) +  4 2~2 2 2223/.X(12) (13) (11) 
+ 422 2 

• )-32122(/3) ( /1)  (I2)},  

w h e r e  K4,/(5,/,26 a n d  K7 are c o n s t a n t s  hav ing  the  values  28, 
70, 228 and  150 respec t ive ly  fo r  c e n t r o s y m m e t r i c  p lane  
g r o u p s  a n d  space  g r o u p s  a n d  the  values  16, 36, 96 a n d  60 
respec t ive ly  for  n o n - c e n t r o s y m m e t r i c  p lane  g r o u p s  a n d  
space  g roups .  
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